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In this paper, we focus on the control problem of defective systems with repeated
eigenvalues. Using the singular-value decomposition of input matrix B and output matrix
C in the modal subspace, the quantitative measures of modal controllability and
observability of defective systems are discussed. For a near-defective system with close
eigenvalues, we "rst transform it into a defective one, and then apply the same method to
deal with near-defective systems. Numerical examples for a general damping system and an
airfoil are given to illustrate the applications of the present method.
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1. INTRODUCTION

The modal controllability and observability for systems with distinct or repeated
eigenvalues of non-defective systems have been well discussed. For example, reference [1]
investigated the modal controllability and observability for distinct modes; references [2}4]
discussed criteria for the modal controllability and observability of repeated modes. The
singular-value decomposition (SVD) technique was widely used to deal with the control
problems. Recent papers in this "eld include the measures of modal controllability and
observability for non-defective systems with repeated eigenvalues [5, 6], indirect adaptive
periodic control [7], controllability analysis of thermally coupled distillation systems [8],
stability and modal control for multi"ngers robot band [9], the controllability and
observability analysis for adaptive optical systems [10], and the index of controllability and
observability of a given mode [11].

The above discussions mainly involve the control problems of the non-defective system,
which has a set of complete eigenvectors to span the eigenspace. However, in actual
engineering problems, such as general damping systems, #utter analysis of aeroelasticity,
and so on, the system called &&defective system'' does not have a set of complete eigenvectors
to span the eigenspace [12]. In this special case, the state matrix A cannot be diagonalized.
It is well known that the defective system with repeated eigenvalues is ill-conditioned
because the dynamic characteristic is very sensitive to the changes of parameters of the
defective system with repeated eigenvalues, and it can be changed into a near-defective
system with close eigenvalues [13]. Therefore, the di$culty arises in designing the modal
control of the defective or near-defective system. The major di$culty is that the generalized
0022-460X/01/480413#14 $35.00/0 ( 2001 Academic Press



414 Y. D. CHEN E¹ A¸.
right and left modal matrices, U and V, cannot be obtained with the standard methods for
extracting the modal matrix, and that from the view point of mathematics, the close
eigenvalues of near-defective systems are distinct, but the dynamic characteristic is still
defective. Therefore, it is necessary to discuss the modal control problems of the defective
and near-defective systems.

This study focuses on the quantitative measures of the modal controllability and
observability for a defective system with repeated eigenvalues based on the modal control
equations, and also for a near-defective system with close eigenvalues. For a near defective
system, we "rst transform it into a defective one, and then apply the same method to deal
with the near-defective system. The theory is illustrated by numerical examples for a general
damping system and an airfoil to prove the validity.

2. GENERALIZED MODAL THEORY OF DEFECTIVE SYSTEMS

The generalized modal theory can be found in reference [12]. Consider a linear vibration
system described by

MxK#(D#G)x5 #(K#H)x"0, (1)

where it is assumed that M, D, G, K, and H are real matrices, M, D, K are symmetric
matrices, M"MT, D"DT, K"KT, corresponding to the mass, damping, and sti!ness
respectively, G and H are skew-symmetric matrices, GT"!G, HT"!H, corresponding
to gyroscopic and circulatory (or non-conservative positional) forces, respectively, and M is
assumed to be positive de"nite. The eigenvalue problem is as follows:

(Mj2#(D#G)j#(K#H))x"0. (2)

Using the state vector

u"C
jx

x D, (3)

one has

Au"ju, (4)

where

A"C
!M~1(D#G) !M~1(K#H)

I 0 D . (5)

In equation (5), I is the unit matrix and 0 is the zero matrix of the same order.
It is assumed that AM is used to denote the algebra multiplicity of the eigenvalue j in

equation (4), and GM is used to denote the number of the linear independent eigenvectors
corresponding to j. If AM"GM for the distinct and repeated eigenvalues, the system is
non-defective; if AM'GM, the system with repeated eigenvalues is defective.

From the algebra theory for the defective matrix A, there exists non-singular matrix U,
such that

AU"UJ, (6)
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where U is the generalized modal matrix of A, J is the Jordan block of A given by

J"

J
1

J
2

}

J
r

, (7)

J
i
"

j
i

1

j
i

}

} 1

j
i mi

]mi

r
+
i/1

m
i
"n. (8)

Equation (6) can be written in the following manner:

(A!j
i
I)u(i)

1
"0, (A!j

i
I )u(i)

j
"u(i)

j~1
, j"2, 3,2,m

i
, i"1, 2,2, r, (9)

where u(i)
j

denotes the jth generalized mode corresponding to the ith defective eigenvalue j
i
.

The conjugate and transpose of A is called adjoint system, i.e., for AH the generalized modes
satisfy the following equation:

AHV"VJH, (10)

where AH and JH are the conjugate and transpose of A and J, respectively, V is the
generalized modal matrix of AH .

Equation (10) can also be written as follows:

(AH!jI
i
I)v(i)

j
"v(i)

j`1
, j"1, 2, 3,2,m

i~1
,

(AH!jI
i
I )v(i)

mi
"0, i"1, 2,2, r, (11)

where jI
i

is the conjugate of j
i
. In general, u

i
(i"1, 2,2, r) are known as the right

eigenvectors, v
i
(i"1, 2,2, r) are known as the left eigenvectors, u

i`1
,2, u

i`mi~1
and

v
i`1

,2, v
i`mi~1

are the right and left generalized modes corresponding to j
i
respectively.

The right generalized modal matrix U and the left generalized modal matrix V satisfy the
following orthogonal condition:

VHU"I. (12)

3. QUANTITATIVE MEASURES FOR MODAL CONTROLLABILITY AND
OBSERVABILITY OF DEFECTIVE SYSTEMS WITH REPEATED EIGENVALUES

We consider the control system indicated by the following state equation:

XQ (t)"AX(t)#BZ(t), y(t)"CX(t), (13)

where the state matrix is given by equation (5), X(t)3Rn]1 is the state vector, Z(t)3Rr]1 is
the input vector, y (t)3Rq]1 is the output vector, matrices B3Rn]r and C3Rq]n are called
the actuator distribution matrix and sensor distribution matrix, respectively, indicating the
locations of control forces and sensors.
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Transforming equation (13) into the modal co-ordinates through the modal
transformation

X(t)"Um(t) (14)

yields

mQ
m

2

mQ
d

"C
J 0

0 K
d
D

m
m

2

m
d

#

VH
m

2

VH
d

BZ(t) (15)

and

y(t)"C[;
m
,;

n~m
]

m
m

2

m
d

"CU
m
m
m
(t)#CU

n~m
m
d
(t), (16)

where

J"

j 1

j }

} 1

j
m]m

, (17)

K
d
"

j
m`1

0

j
m`2

}

0 j
n

. (18)

In equation (15), we assume that j
1
"j

2
"2"j

m
"j are defective repeated

eigenvalues with m multiplicity, and the rest of the eigenvalues, j
m`1

, j
m`2

,2, j
n
, are

distinct, the right and the left modal matrices are expressed as the partitional form,
U"[U

m
, U

n~m
], V"[V

m
, V

n~m
], m

m
and m

d
are the modal co-ordinates corresponding to

the repeated and distinct eigenvalues.
From equations (15) and (16), we obtain the control governing equations corresponding

to the defective repeated eigenvalues and distinct eigenvalues in terms of the generalized
modal co-ordinates

mQ
m
"Jm

m
#VH

m
BZ(t), mQ

d
"K

d
m
d
#VH

n~m
BZ(t), (19, 20)

y
m
"CU

m
m
m
, y

d
"CU

n~m
m
d
. (21, 22)

Equations (19) and (21) can be written as

mQ
m
"Jm

m
#P

m
Z(t), y

m
"C

m
m
m
, (23, 24)
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where

P
m
"VH

m
B, C

m
"CU

m
. (25, 26)

In equations (25) and (26), P
m

and C
m

are called the modal controllable and observable
matrices, respectively, which can be used to investigate the controllability and observability.

For the defective system with repeated eigenvalues expressed by equations (23) and (24), it
is controllable if and only if [2]

rank(P
m
)"m (27)

and it is observable if and only if

rank(C
m
)"m. (28)

Reference [5] presented a criterion for the quantitative measures for modal controllability
and observability of non-defective systems with repeated eigenvalues. In the following, we
try to extend the idea presented in reference [5] to the case of the defective or near-defective
systems with repeated or close eigenvalues.

Taking the SVD of the modal controllable matrix, P
m

in equation (25), yields

P
m
"URWH , (29)

where U is the right singular vectors of P
m
, U3Rm]m, W is the left singular vectors of P

m
,

W3Rr]r, UHU"I
m
, WHW"I

r
, and

R"C
R
p

0D
m]m

, (30)

where R
p
"diag[p

1
, p

2
,2,p

p
], and the non-zero positive numbers p

i
are in descending

order, p
1
*p

2
*2*p

p
'0.

Similar to deductions presented in reference [5], the following equations can be obtained:

gR "UHJUg#RZ@(t), Z@(t)"WHZ (t), (31, 32)

where g is the new generalized modal co-ordinates. From equation (31), it can be seen that
the quantitative measure for controllability of each defective repeated mode can be shown
clearly:

(1) Since the modal control vector RZ@
i
(t) is proportional to the singular-value p

i
, the

controllability of g
i
can be measured using p

i
. The greater p

i
is, the less the modal

control force is needed to obtain the same control e!ect on g
i
.

(2) The necessary and su$cient condition of the controllability of all the repeated
eigenvalues of the defective system is rank(R)"m, or r*m and p"m.

(3) When 0(p(m, only a part of the repeated modes of the defective system is
controllable, i.e., g

i
(i"1, 2,2, p) are controllable, leaving the rest, g

i
(p#1)i)m),

uncontrollable.

On the basis of duality, we can also obtain the measures of modal observability of
defective repeated eigenvalues.
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4. QUANTITATIVE MEASURES FOR MODAL CONTROLLABILITY AND
OBSERVABILITY OF NEAR-DEFECTIVE SYSTEMS WITH CLOSE EIGENVALUES

It should be pointed out that if some small changes of parameters of defective systems are
introduced, the system with defective repeated eigenvalues can be perturbed into one with
close eigenvalues, which is known as a near-defective system. For such a case, although the
close eigenvalues are distinct, the dynamic characteristic of the system is still defective.
Thus, the methods for dealing with controllability and observability of repeated eigenvalues
of defective system as discussed in the above cannot be directly used to deal with
a near-defective system with close eigenvalues. Therefore, it is necessary to discuss the
quantitative measures of controllability and observability for a near-defective system with
close eigenvalues.

Assume that n eigenvalues of A are close. The right modal matrix U"[u
1
, u

2
,2, u

n
], and

the left modal matrix V"[v
1
, v

2
,2, v

n
], satisfy the following equations:

AU"UJ, AHV"VJH (33, 34)

and the orthogonal condition

UHV"VUH"I, (35)

where J"diag(j
1
, j

2
,2, j

n
).

Taking the algebra average of j
1
, j

2
,2, j

n

j
0
"

1

n

n
+
i/1

j
i

(36)

and letting

J
0
"

j
0

1

j
0

}

} 1

j
0

(37)

and

dJ
0
"

j
1
!j

0
!1

j
2
!j

0
}

} !1

j
n
!j

0

, (38)

the matrix J in equation (33) can be written in the following form:

J"J
0
#dJ

0
. (39)

Considering the orthogonal condition (35) and substituting equation (39) into equation (33)
yields

A"UJ
0
VH#UdJ

0
VH

"A
r
#dA, (40)



CONTROL PROBLEM OF DEFECTIVE SYSTEMS 419
where

A
r
"UJ

0
VH, dA"UdJ

0
VH. (41)

If j
1
, j

2
,2, j

n
are the close eigenvalues and d"maxDj

i
!j

0
D, it can be shown that the

error matrix, dA"UdJ
0
VH, is a small perturbational one and its norm satis"es

EdAE
2
)EUE

2
EdJ

0
E
2
EVHE

2

)EdJ
0
E
2
)dn. (42)

Since the eigenvalues of J
0

cannot be changed by the orthogonal transformation, the
eigenvalues of A

r
are identical with those of J

0
. Equation (40) indicates that the matrix A is

equal to the sum of the defective matrix A
r
with n repeated eigenvalues and the perturbed

matrix dA and the right and the left modal matrices U and V of A
r
are the same as those of

A. Therefore, Equations (33) and (34) can be written as follows:

AU"U(J
0
#dJ

0
), AHV"V(J

0
#dJ

0
)H. (43, 44)

Using the modal transformation

X(t)"Um(t), (45)

the control equation (13) can be approximated by

mQ (t)"J
0
m(t)#VHBZ(t) (46)

and

y(t)"CUm(t). (47)

Equations (46) and (47) show that the analysis for controllability and observability of the
near-defective system with close eigenvalues can be transformed into one of the defective
system with repeated eigenvalues which are equal to the average value of the close
eigenvalues.

If the control equation of a near-defective system with close eigenvalues is expressed as
one of the non-defective system with distinct eigenvalues

mQ (t)"diag(j
1
, j

2
,2, j

n
)m(t)#VHBZ(t), (48)

we have that since equation (48) represents a set of independent equations, the analysis
results based on these equations will be misleading.

In addition, because the system is near defective, the right and left modal matrices U and
V in equations (46) and (47) cannot be obtained using the following equations:

AU"UK, AHV"VKM , (49, 50)

where K"diag(j
1
, j

2
,2, j

n
), KM is the conjugate of K.

From the above discussions, it is known that for a near-defective system with close
eigenvalues, we should use a suitable method with numerical stability such as the invariant
subspace recursive method presented in reference [12] for computing the generalized modal
matrix U and V based on equations (9) and (11), and the present method to obtain the
controllability and observability of the defective system with repeated eigenvalues can be
used to deal with the problem of near defective with close eigenvalues.
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The invariant subspace recursive procedure for computing the generalized modes is given
as follows:

(1) form A and compute j
i
(i"1, 2,2, n) which are close eigenvalues;

(2) compute

j
0
"

1

n

n
+
i/1

j
i
;

(3) let M"A!j
0
I, W"I, t"0;

(4) identify if n"t, turn to 9, otherwise, turn to 5;
(5) compute

M"UH

p
1

p
2

}

p
t1

}

0

W;

(6) compute

M"WI HMWI , WI "C
(

ID;
(7) record W"WWI ;
(8) t"t#t1, turn to 4;
(9) Output W, stop.

Here, W is the right generalized modes U that we need. If M"AH
!jI

0
I, the left

generalized modes V can be obtained. The details of invariant subspace recursive procedure
can be found in reference [12].

5. NUMERICAL EXAMPLES

In order to illustrate the applications of the procedure presented in this paper, three
numerical examples are given as follows.

Example 1. Consider a general damping system shown in Figure 1 with the parameter
matrices given by

M"C
1 0

0 1D , D"C
4 !2)8284

!2)8284 6 D, K"C
36 0

0 81D .

The state matrix A is

A"C
!M~1D !M~1K

I 0 D"
!4 2)8284 !36 0

2)8284 !6 0 !81

1 0 0 0

0 1 0 0

.
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The state vector is

x(t)"[x5
1
, x5

2
, x

1
, x

2
]T

and the control matrix B in equation (13) for the single-input control force, Z(t), applied to
mass 2 is

B"C
0

2

M~1D C
0

1D"
0 0

0 0

1 0

0 1

C
0

1D"
0

0

0

1

.

The eigenvalues of A are two pairs of 2-multiple conjugate roots

j
1
"!2)5#6)910141i, j

2
"!2)5!6)910141i,

where i"J!1
The Jordan form matrix is

J"C
J
1

0

0 J
2
D"

j
1

1 0 0

0 j
1

0 0

0 0 j
2

1

0 0 0 j
2

.

This system is defective. By using the invariant subspace recursive procedure presented in
the above section, the right and left modal matrices U and V can be obtained as follows:

U"

!0)767520#0)000000i 0)565130!0)255161i !0)767520#0)000000i 0)565130#0)255161i

0)045226!0)625048i !0)265742!0)723783i 0)045226#0)625048i !0)265742#0)723783i

0)035533#0)098216i !0)088492!0)091033i 0)035533!0)098216i !0)088492#0)091033i

!0)082078#0)023150i !0)053706#0)045145i !0)082078!0)023150i !0)053706!0)045145i

and

V"

!0)096825#0)000000i !0)010030#0)130224i !0)096825#0)000000i !0)010030!0)130224i

0)005705#0)078851i !0)080859!0)000375i 0)005705!0)078851i !0)080859#0)000375i

!0)161374#0)446047i 0)788270#0)355813i !0)161374!0)446047i 0)788270!0)355813i

0)838700#0)236553i !0)164682#0)448675i 0)838700!0)236553i !0)164682!0)448675i

.

The modal control equations of this system are

mQ
m1"J1mm1#P

m1z(t), mQ
m2"J2mm2#P

m2z(t),

where

J1"C
j1 1

0 j1D , J2"C
j2 1

0 j2D.
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The control matrices in equation (25) corresponding to the two repeated eigenvalues
subspaces are

P
m1"VH

m1B"

!0)096825#0)000000i !0)010030#0)130224i

0)005705#0)078851i !0)080859!0)000375i

!0)161374#0)446047i 0)788270#0)355813i

0)838700#0)236553i !0)164682#0)448675i

H 0

0

0

1

"C
0)838700 !0)236553i

!0)164682 !0)448675iD ,

P
m2"VH

m2B"

!0)096825#0)000000i !0)010030!0)130224i

0)005705!0)078851i !0)080859#0)000375i

!0)161374!0)446047i 0)788270!0)355813i

0)838700!0)236553i !0)164682!0)448675i

H 0

0

0

1

"C
0)838700#0)236553i

!0)164682#0)448675iD.

Taking the SVD of P
m1 and P

m2 in equation (29) yields

P
m1"U1R1WH

1
, P

m2
"U

2
R
2
WH

2

R
1
"diag(p1

1
"0)993884, p1

2
"0), R

2
"diag(p2

1
"0)993884, p2

2
"0).

Since p1
1
'0, p1

2
"0, the "rst mode corresponding to the defective repeated eigenvalues

j
1
is controllable, and the second mode corresponding to j

1
is uncontrollable. Similarly, the

third mode corresponding to the defective repeated eigenvalue j
2

is controllable, and the
fourth mode corresponding to j

2
is uncontrollable.

Example 2. Assume that the state matrix presented in Example 1 is perturbed into

A"

!4 2)8284(1#e) !36 0

2)8284 !6 0 !81

1 0 0 0

0 1 0 0

.

If the small parameter e"0)1]10~3, the system has two sets of close eigenvalues, i.e.,
J"diag(j

1
, j

2
, j

3
, j

4
)

j
1
"!2)512714#6)905525i, j

2
"!2)487286#6)914724i,

j
3
"!2)512714!6)905525i, j

4
"!2)487286!6)914724i.
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The right modes are

U"

!0)767547#0)000000i 0)565098!0)255152i !0)767547#0)000000i 0)565098#0)255152i

0)045226!0)625015i !0)265754!0)723807i 0)045226#0)625015i !0)265754#0)723807i

0)035535#0)098219i !0)088492!0)091031i 0)035535!0)098219i !0)088492#0)091031i

!0)082076#0)023149i !0)053708#0)045147i !0)082076!0)023149i !0)053708!0)045147i

and the left modes are

V"

!0)096821#0)000000i !0)010048#0)130223i !0)096821#0)000000i !0)010048!0)130223i

0)005706#0)078852i !0)080860!0)000386i 0)005706!0)078852i !0)080860#0)000386i

!0)161368#0)446030i 0)788229#0)355930i !0)161368!0)446030i 0)788229!0)355930i

0)838711#0)236553i !0)164738#0)448635i 0)838711!0)236553i !0)164738!0)448635i

.

The above results show that the system is near defective.
The algebra average of j1, j2, is

j
01
"

1

2

2
+
i/1

j
i
"!2)5#6)910124i.

and the algebra average of j
3
, j

4
, is

j
02
"

1

2

4
+
i/3

j
i
"!2)5!6)910124i.

The Jordan form matrix of A is

J"J
0
#dJ

0
"

j
01

1

j
01

j
02

1

j
02

#

j
1
!j

01
!1

j
2
!j

01
!1

j
3
!j

02
!1

j
4
!j

02

.

Therefore, the near-defective system with close eigenvalues can be transformed into one
of the defective system. With recursive procedure, the right and left generalized modes
U"[U

1
, U

2
] and V"[V

1
, V

2
], corresponding to j

01
and j

02
can be obtained as follows:

U
1
"

!0)767547#0)000000i 0)565098!0)255152i

0)045226!0)625015i !0)265754!0)723807i

0)035535#0)098219i !0)088492!0)091031i

!0)082076#0)023149i !0)053708#0)045147i

,

U
2
"

!0)767547#0)000000i 0)565098#0)255152i

0)045226#0)625015i !0)265754#0)723807i

0)035535!0)098219i !0)088492#0)091031i

!0)082076!0)023149i !0)053708!0)045147i

,



424 Y. D. CHEN E¹ A¸.
V
1
"

!0)096821#0)000000i !0)010048#0)130223i

0)005706#0)078852i !0)080860!0)000386i

!0)161368#0)446030i 0)788229#0)355930i

0)838711#0)236553i !0)164738#0)448635i

,

V
2
"

!0)096821#0)000000i !0)010048!0)130223i

0)005706!0)078852i !0)080860#0)000386i

!0)161368!0)446030i 0)788229!0)355930i

0)838711!0)236553i !0)164738!0)448635i

.

Taking the control matrices P
m1

and P
m2

in equation (46) corresponding to the two modal
subspaces yields

P
m1

"VH
1
B"U

1
R

1
WH

1
, P

m2
"VH

2
B"U

2
R
2
WH

2
,

where R
1
"diag(p1

1
"0)993884, p1

2
"0)0), R

2
"diag(p2

1
"0)993884, p2

2
"0)0)

Since p1
1
'0, p1

2
"0, the "rst mode corresponding to j

1
is controllable, the second mode

is uncontrollable. Similarly, since p2
1
'0, p2

2
"0, the third mode is controllable, and the

fourth mode is uncontrollable.

Example 3. We consider #utter problem of an airfoil in simpli"ed formulation. The airfoil is
replaced by a rigid rectangular panel with two degrees of freedom, a vertical displacement
h and a rotation a. It is assumed that aerodynamic lift force is proportional to the angle of
attack a and to the square of the velocity v of #ight. The di!erential equations of motion are
[14]

mh$#saK#K
h
h"!ov2aba, sh$#JaaK#Kaa"ov2abea.

If the parameters are given as follows: m/(oab2)!5, s/(mb)"0)25, Ja/(mb2)"0)5,
e/b"0)4, K

h
/m"0)25, Ka/Ja"1, and u"v(Ja/Ka)1@2/b, then the above di!erential

equations become

MxK#Kx"0,

where

M"C
1 0)25

0)25 0)5 D, K"C
0)25 0)2u2

0 0)5!0)08u2D.
If the parameter u"1)32567735, the state matrix has the following form:

A"C
0 !M~1K

I 0 D

"

0)00000000000000 0)00000000000000 !0)28571428571429 !0)19632103395740

0)00000000000000 0)00000000000000 0)14285714285714 !0)62065221321282

1.00000000000000 0)00000000000000 0)00000000000000 0)00000000000000

0)00000000000000 1.00000000000000 0)00000000000000 0)00000000000000
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The control matrix B in equation (13) for single-input control force is

B"C
0

2

M~1D C
0

1D"
0)00000000000000

0)00000000000000

!0)57142857142857

2)28571428571429

.

The eigenvalues of A are

j
1
"0)67318886946616i, j

2
"0)67318886946616i,

j
3
"!0)67318886946616i, j

4
"!0)67318886946616i,

where i"J!1. This system is defective and eigenvalues are also the corresponding #utter
frequency.

The right and left modal matrices U and V are

U"

!0)46540318867956 !0)27308418690627 !0)46540318867956 !0)27308418690627

!0)39700584910218 #0)55929647822929 !0)39700584910218 #0)55929647822929

0)69134117215010i #0)66056754098396i !0)69134117215010i !0)66056754098396i

0)58973918736331i !0)61336913663528i !0)58973918736331i #0)61336913663528i

,

V"

!0)68374618664713 !0)53836500812307 !0)68374618664713 !0)53836500812307

!0)45788328680308 #0)63111613367462 !0)45788328680308 #0)63111613367462

0)32665905473259i #0)36242133822492i !0)32665905473259i !0)36242133822492i

0)46489559029220i !0)42486035051943i !0)46489559029220i #0)42486035051943i

and

P
m1

"VH
m1

B"C
!0)87595617510641i

#1)17820728017294iD ,

P
m2

"VH
m2

B"C
#0)87595617510641i

!1)17820728017294iD.
Taking the SVD of P

m1
and P

m1
in equation (29) yields

R
1
"diag(p1

1
"1)46815244976792, p1

2
"0),

R
2
"diag(p2

1
"1)46815244976792, p2

2
"0).

Since p1
1
'0, p1

2
"0, p2

1
'0, p2

2
"0, the "rst and third modes are controllable, the

second and fourth modes are uncontrollable.

6. CONCLUSIONS

The vibration control of the defective system with repeated eigenvalues and
a near-defective system with close eigenvalues is an important problem in actual
engineering. Most of the previous discussions have focused on the non-defective system.
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These results cannot be used to deal with the defective and near-defective system. The main
contribution of the present paper is to extend the idea presented in reference [5] to the
defective and near-defective system. The singular values of modal controllable and
observable matrices can be used as the quantitative measures of modal controllability and
observability of the defective modes, and the necessary and su$cient condition of
controllability and observability of all the defective eigenvalues has been obtained. The
analysis for modal controllability and observability of a near defective system with close
eigenvalues can be transformed into one of the defective system with repeated eigenvalues,
which are equal to the average value of the close eigenvalues. The results given by numerical
examples show that the present procedure is valid and e!ective.
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